SPECTRAL PROPERTIES AND INTRAMOLECULAR HYDROGEN BONDING IN 1-METHYL(PHENYL)-4(5)-SUBSTITUTED 6-OXO-1*H*-PYRIDAZIN-4(5)-OLS

Štefan Kováč^a and Václav Konečný^b

^a Department of Organic Chemistry,

Slovak Institute of Technology, 880 37 Bratislava and

^b Research Institute of Agrochemical Technology, 814 04 Bratislava

Received November 3rd, 1978

Infrared, ultraviolet and ¹H-NMR spectral data of 53 1-methyl(phenyl)-4(5)-substituted 6-oxo--1*H*-pyridazin-4(5)-ols are listed. Intramolecular hydrogen bondings are discussed; relatively strong hydrogen bondings OH…S were found, which are comparable in terms of strength with those of OH…O=C. Wavenumbers of v(C=O) and v(O-H) bands linearly correlated with substituent constants σ^* , σ_R and σ^F .

Pyridazinones under study were the starting material for the synthesis of esters of organophosphorus acids used as pesticides¹⁻⁴. A linear correlation of ν (C=O) and ν (C=C) bands was already observed with pyridazin-4-yl esters of thiophosphoric acid⁵.

The title pyridazinones revealed linear wavenumber correlations of v(C=O) and v(OH) bands with substituent constants with the exception of pyridazinones containing an SR group; the latter showed very strong intramolecular hydrogen bondings OH…SR.

Excepting sulfur containing compounds IX - XII, XVIII and XIX (Table I), pyridazinones A displayed absorption bands at about 3500 cm^{-1} , indicating the formation of intramolecular hydrogen bonding OH…OR, or OH…Hal. As known, the strength of an intramolecular hydrogen bonding first of all depends on the electronegativity of the electron-accepting group, charge of the donating or accepting groups, steric effects and on the resonance stabilization of the ring formed by the hydrogen bonding⁶⁻⁸. On the basis of wavenumbers of OH bond following order of the hydrogen-bonding strength was observed:

$$OH \cdots S > OH \cdots O = C > OH \cdots O - > OH \cdots Hal$$

Although oxygen atom is a more convenient proton acceptor than sulfur, still the v(O-H) bands were observed at lower wavenumbers; this phenomenon can be rationalized by a stronger interaction of free electron pairs of the bulkier sulfur atom

TABLE I

Wavenumbers of Bands in the 1R Spectra (cm^{-1}) of Pyridazinones of General Formula B (in CHCl₃)

Compound	\mathbf{R}^{1}	R ²	v(C==N)	v(C==0)	ν(O—H)
1 ^a	н	СНа	1 605	1 638	3 590
II^a	Br	CH ₂	1 622	1 633	3 510
111ª	CI	CH ₂	1 615	1 631	3 510
IV^a	но	CH,	1 622	1 660	3 382
V	CH ₂ O	CH,	1 630	1 646	3 508
VI	C ₂ H ₂ O	СН	1 629	1 645	3 508
VII	n-C ₁ H ₇ O	CH ₃	1 627	1 644	3 509
VIII	i-C ₃ H ₇ O	СН	1 626	1 644	3 505
IX	CH ₃ S	CH	1 635	1 660	3 375
X	C2H2S	CH	1 634	1 659	3 370
XI	n-C ₃ H ₇ S	CH	1 635	1 660	3 370
XII ^a	i-C ₃ H ₂ S	CH	1 623	1 656	3 365
XIII	CI	C_6H_5	1 615	1 652	3 510
XIV	CH ₃ O	C ₆ H ₅	1 637	1 660	3 508
XV	C ₂ H ₅ O	C ₆ H ₅	1 635	1 658	3 517
XVI	C_6H_5O	C ₆ H ₅	1 635	1 667	3 519
XVII	C ₆ H ₅ OCH ₂ CH ₂ O	C ₆ H ₅	1 642	1 655	3 490
XVIII	CH ₃ S	C ₆ H ₅	1 647	1 658	3 370
XIX	C ₂ H ₅ S	C ₆ H ₅	1 647	1 660	2 368
XX^{b}	$(CH_3)_2C = NO$	C ₆ H ₅	1 622	1 633	3 400 🐃
XXI	CH ₃ O	C_2H_5	1 629	1 645	3 508
XXII	CH ₃ O	n-C ₃ H ₇	1 627	1 646	3 509
XXIII	CH ₃ O	i-C ₃ H ₇	1 629	1 644	3 508
XXIV	CH ₃ O	n-C ₄ H ₉	1 629	1 645	3 508
XXV	CH ₃ O	$n-C_5H_{11}$	1 627	1 645	3 506
XXVI	CH ₃ O	n-C ₆ H ₁₃	1 628	1 647	3 508
XXVII	CH3O	C ₆ H ₁₁ -cyclo	1 626	1 644	3 506
XXVIII	CH ₃ O	C ₆ H ₅ CH ₂	1 629	1 651	3 518
XXIX	CH ₃ O	$CH_2 = CHCH_2$	1 630	1 645	3 505
XXX^{b}	Cl	C ₂ H ₅	1 608	1 640	
XXXI	Cl	$n-C_3H_7$	1 620	1 654	3 500
XXXII ^b	Cl	i-C ₃ H ₇	1 618	1 644	3 500
XXXIII	Cl	n-C ₄ H ₉	1 621	1 653	3 501
XXXIV	Cl	$n-C_{5}H_{11}$	1 615	1 646	3 505
XXXV	Cl	n-C ₆ H ₁₃	1 617	1 647	3 503
XXXVI ^b	Cl	$CH_2 = CHCH_2$	1 619	1 655	3 500
XXXVII ^b	Cl	C ₆ H ₅ CH ₂	1 633	1 655	
XXXVIII ^b	Cl	C ₂ H ₅ SCH ₂	1 621	1 643	
XXXIX [®]	Cl	C ₆ H ₁₁ -cyclo	1 615	1 645	-
XL ^b	Cl	C ₂ H ₅ OCH ₂	1 609	1 648	-

^a Saturated solution; ^b measured in KBr.

with the hydrogen atom of the OH group, when compared with oxygen, e.g. compounds I, VI and X.

The IR spectrum of *I* contained the v(O--H) band at 3590 cm⁻¹, backing thus the assignment of these bands to other compounds under investigation. This also might be in relation with intramolecular hydrogen bondings of *o*-halogen-substituted phenols. No intramolecular hydrogen bonding was observed with *o*-fluorophenol due to a too long distance of OH···F. The same holds for compounds I - VIII, where the distance OH···O is also relatively great as to a strong intramolecular hydrogen bonding could be formed; consequently, the wavenumber of v(OH) bands appeared at ~3500 cm⁻¹ with exception of compound *IV*. Here is a possibility two types of intramolecular bondings to be formed, where the OH···O=C bond is strong ger than that of OH···OR.

The spectrum of *IV* displayed only one broad band, although two bands could be expected (at ~3500 and 3300 cm⁻¹); this was caused by overlapping. The length of the carbon chain of RO—, or RS groups affected relatively little the wavenumber of ν (OH…O) and ν (OH…S) bands. The value ε of ν (O—H) was found virtually not to alter with compounds *V* and *IX* in the concentration range 2.10⁻² to 2.10⁻³M in chloroform (*V*, $\varepsilon = 142 \rightarrow 1451 \text{ mol}^{-1} \text{ cm}^{-1}$; *IX*, $\varepsilon = 71 \rightarrow 721 \text{ mol}^{-1} \text{ cm}^{-1}$) this being an evidence that an intramolecular hydrogen bonding was involved.

The wavenumber of v(C=O) bands of compounds, excepting sulfur containing ones, lowers by 15 cm⁻¹ when tetrachloromethane was replaced by chloroform. The wavenumber of v(C=O) bands of sulfur containing compounds IX-XII and XVIII-XXX is less affected than that of other compounds of A type (~6 cm⁻¹ lower wavenumber in CHCl₃ than in CCl₄); this finding can be explained by a steric interaction of the SR group adjacent to carbonyl group.

Compounds of general formula B (Table II) had, due to intramolecular hydrogen bonding, the wavenumber of v(C=O) bands less affected as anticipated by the kind

of solvent by ~5 cm⁻¹; wavenumbers of v(C=O) bands were shifted towards lower values when changing CCl₄ to CHCl₃. Higher wavenumbers of v(C=O) bands were observed with compounds XIII-XX, when compared with those of I-XII with the same substituents R¹, what can be rationalized by a lowered conjugation of the carbonyl group resulting from the withdrawal of π -electrons of the benzene ring and the lone electron pair of oxygen of the carbonyl group. This accorded with ultraviolet spectra of these compounds. Wavenumbers of v(C=O) bands of V-VIII were lower (~1645 cm⁻¹) than

those of XLI-XLIII (~1660 cm⁻¹) having an intramolecular hydrogen bonding HO···O=C. This indicated that the +M effect of hydroxyl group was decisive for the wavenumber of ν (C=O) bands. Sulfur containing compounds IX-XII and XLIV to XLVI behaved inversely. The strongest electron-donating effect showed the RS

TABLE II

Wavenumbers of Bands in the IR Spectra (cm⁻¹) of Pyridazinones of General Formula B (in CHCl₃)

Compound	R ¹	\mathbb{R}^2	ν(C==N)	v(C==0)	v(О—Н)
XLI	CH ₃ O	CH ₃	1 609	1 662	3 375
XLII	C ₂ H ₅ O	CH	1 619	1 660	3 386
XLIII	n-C ₃ H ₇ O	CH ₃	1 618	1 660	3 385
XLIV	CH ₃ S	CH ₃	1 619 ^a	1 635	3 375
XLV	C ₂ H ₅ S	CH	1 620	1 632	3 370
XLVI	n-C3H7S	CH ₃	1 620 ^a	1 635	3 372
XLVII	CI	CH ₃	1 620 ^a	1 630	3 380
XLVIIII	Br	CH ₃	1 610 ^a	1 630	3 380
IL	CH ₃ O	C_6H_5	1 625	1 665	3 375
L	C ₂ H ₅ O	C ₆ H ₅	1 625	1 665	3 375
LI	CH ₃ S	C ₆ H ₅	1 612	1 635	3 375
LII	C_2H_5S	C ₆ H ₅	1 615	1 635	3 370
LIII	CĨ	C ₆ H ₅	1 600	1 645	3 370

^a Values are approximate.

Collection Czechoslov, Chem. Commun. [Vol. 45] [1980]

group bound at position 4. The wavenumbers of ν (O—H) bands conjugated through an intramolecular hydrogen bonding with sulfur of the RS group and oxygen of the carbonyl group are very close (~3370 cm⁻¹), what indicated an approximately equally strong hydrogen bonding; this finding is, with respect to the ability of sulfur to form hydrogen bondings, quite surprising.

The wavenumbers of v(C=N), v(C=O) and v(O-H) bands were correlated with σ^* , σ^F , σ_1 and σ_R constants of substituents⁹. Substances I-IX showed a linear correlation between the wavenumber of v(O-H) bands and substituent R¹ constants with σ^F constants; correlation coefficients were lower with σ_R and σ_1 :

 $\begin{array}{l}\nu(O-H) - \sigma^{F}: \varrho = 3.43, r = 0.86\\ \nu(O-H) - \sigma_{R}: \varrho = -3.06, r = 0.72\\ \nu(O-H) - \sigma^{*}: \varrho = 2.56, r = 0.66\\ \nu(O-H) - \sigma_{I}: \varrho = 1.28, r = 0.66\end{array}$

Sulfur containing compounds IX - XII could not be included into the correlation, since the wavenumbers of v(O-H) bands were observed, due to a strong intramole-

FIG. 1

Dependence of ν (C=O) Both on σ_1 (b) and σ_R (a) in 5-Substituted 1-Methyl-6-oxo-1*H*-pyridazines cular hydrogen bonding, at about 3370 cm⁻¹. A like linear correlation was learned from the relation of wavenumbers of v(C=O) bands with σ_1 and σ_R constants (Fig. 1):

$$v(C=O) - \sigma_1$$
: $\varrho = -10.53$, $r = 0.83$
 $v(C=O) - \sigma_p$: $\varrho = -18.80$, $r = 0.96$

The correlation coefficients were found to be lower, when correlating the wavenumbers of ν (C=N) bands with σ_1 and σ_R constants:

$$v(C=N) - \sigma_1: \rho = 5.28, r = 0.64$$

 $v(C=N) - \sigma_R: \rho = 9.03, r = 0.71$

Compounds XIII-LIII did not display linear dependence of v(C=O) and v(C=N) bands on substituent constants when correlating the wavenumbers of v(C=O), v(C=N) and v(O-H) bands with substituent constants.

Ultraviolet spectra of these compounds (Table III) were characteristic of two bands; the band at a shorter wavelength had a shoulder. The position of bands at shorter wavelengths (210-222 nm) is relatively little affected by the nature of \mathbb{R}^1 and \mathbb{R}^2 substituents with the exception of I and LIII-LV in the spectra of which bands at 252 and 247 and 257 nm, respectively were seen. Bands at longer wavelengths were not significantly affected by the nature of substituents \mathbb{R}^1 and \mathbb{R}^2 . Compounds containing sulfur and XX, LIII constituted an exception; here the bands at 300-318 nm were observed, this being obviously associated with a stronger intramolecular hydrogen bonding OH…SR, or with the nature of substituents $(CH_3)_2C=NO$ and CL. Bands at lower wavelengths belonged to $\pi^* \leftarrow \pi$ transitions, whereas those at the longest wavelengths to $\pi^* \leftarrow n$ transitions.

Signals of =CH protons of the pyridazinone ring were seen in the ¹H-NMR spectra at δ 7:55-8:01 ppm. The nature of the substituent little affected the chemical shifts of these protons. Chemical shifts of =CH protons of the pyridazinone ring of XIII-XX and IL-LIII had higher δ values than the other compounds, what indicated that the lone electron pair of the nitrogen atom of the pyridazinone ring is in interaction with π -electrons of benzene ring; as a consequence, a shielding of =CH protons took place.

EXPERIMENTAL

The infrared spectra were measured with a UR-20 (Zeiss, Jena) spectrometer in CHCl₃ at 0.02 to 0.06M concentrations and 0.0089 cm-cell width. Spectra of little soluble compounds were measured either as saturated solutions in CHCl₃, or in KBr disc. Reading accuracy $\pm 1 \text{ cm}^{-1}$.

TABLE	E III

Ultraviolet (λ in nm, ε in 1 mol cm⁻¹) and ¹H-NMR (δ , ppm) Spectral Data of Pyridazinones

Compound	λ max (log ε)	λ max (log ε)	λ max ^a	CH ₃ N ^b	=CH	b
,	252 (4:02)	282 (3-93)		3.55 c	7:60 d	6-01 d
	214 (4.38)	291 (3.68)	_	3.62 s	7.61 s	0014
111	214 (4.18)	287 (3:61)	_	3.60 s	7.67 s	
IV	215(4.31)	286 (3.71)		3.67 s	7.85 s	7.55 s
V	214 (4.50)	285 (3.75)	224	3.52 s	7.60 s	
				3.74 s ^c	7.67 s ^c	
VI	214 (4.42)	286 (3.72)	_	3.63 s	7.60 s	
VII	215 (4.49)	287 (3.71)		3.65 s	7.58 s	
VIII	214 (4.37)	287 (3.71)	225	3.64	7.66 s	
IX	215 (4-23)	318 (3.72)	228	3∙70 s	7.58 s	
Х	214 (4.24)	317 (3.70)	225	3·72 s	7·57 s	
				3.80 s ^c	7.80 s ^c	
XI	213 (4.21)	318 (3.74)	228	3·55 s	7·56 s	
XII	214 (4.21)	317 (3.70)	227	3·59 s	7•57 s	
XIII	211 (4.22)	285 (4.01)	236		7-96 s	
XIV	210 (4.41)	283 (3.91)	223	-	7·76 s	
XV	211 (4.40)	281 (3.82)	227	_	7·77 s	
XVI	211 (4.48)	284 (3.87)	226		7·77 s	
XVII	210 (4.38)	272 (8.82)	220	_	7•76 s	
XVIII	212 (4.23)	310 (3.73)	232	-	7·78 s	
XIX	210 (4.31)	313 (3.79)	244	—	7•78 s	
XX	212 (4.25)	302 (4.06)	233	-	7·76 s	
XXI	220 (4.42)	285 (3.63)	_	3.81 s ^d	7•65 s	
XXII	215 (4.31)	290 (3.63)		3•82 s ^d	7•66 s	
XXIII	220 (4.40)	285 (3.63)	-	3•80 s ^d	7•70 s	
XXIV	215 (4.26)	284 (3.63)	-	3.81 s ^d	7∙63 s	
XXV	215 (4.39)	282 (3.58)		3.82 s ^d	7∙65 s	
XXVI	221 (4.31)	285 (3.73)	-	3.57 sª	7·16 s	
XXVII	215 (4.45)	286 (3.66)		3.80 s ^d	7·63 s	
XXVIII	214 (4.49)	286 (3.76)	228	3·85 sª	7•70 s	
XXIX	218 (4.31)	289 (3.88)	-	3·85 sª	7·75 s	
XXX	216 (4.45)	286 (3.76)	227		7•77 s	
XXXI	215 (4.46)	286 (3.76)	227	—	7·72 s	
XXXII	215 (4.50)	286 (3.75)	226	_	7·70 s	
XXXIII	216 (4.42)	287 (3.73)	227		7·71 s	
XXXIV	216 (4.51)	287 (3.73)	227	_	7•72 s	
XXXV	216 (4.47)	286 (3.71)	227		7.75 s	
XXXVI	215 (4.45)	286 (3.77)	227	-	7.75 s	
XXXVII	216 (sh)	280 (4.05)	227	—	7·76 s	
XXXVIII	222 (sh)	287 (4-31)	298°	~	7•88 s	
XXXIX	217 (4.53)	280 (3.92)	227	-	7·72 s	

TABLE	ш

(Continued)

Compound	$\lambda \max$ (log ε)	λ max (log ε)	$\lambda \max^a$	CH ₃ N ^b	=CH- ^b
XL	215 (4.49)	287 (3.82)	226	_	7•75 s
XLI	218 (4.35)	288 (3.94)	205	3.60 s	7.81 s
XLII	218 (4.32)	287 (3.91)	_	3.61 s	7.76 s
XLIII	218 (4-32)	288 (3.91)	205	3.60 s	7·78 s
XLIV	215 (4-17)	306 (3.75)	208	-	
XLV	215 (4.11)	303 (3.82)	_	3.83 s	7.60 s
XLVI	215 (4.19)	308 (3.75)	202	_	_
XLVII	217 (4.35)	288 (3.95)	205	3.61 s	7∙80 s
XLVIII	218 (4.22)	284 (3.71)		3.61 s	7·83 s
IL	222 (4.35)	285 (3.79)	-		8.01 s
L	222 (4.35)	285 (3.69)	-		8.00 s
LI	214 (4.28)	291 (3.81)	232 ^f	-	7·92 s
LII	215 (4.32)	295 (3.71)	232 ^g	_	8.04 s
LIII	247 (4.27)	300 (4.00)	_	_	7·96 s

^a shoulder; ^b s singlet, d doublet; ^c measured in CDCl₃; ^d signals of CH₃O protons; ^c log e 4.04; ^f log e 4.28; ^g log e 4.36.

Correlation of wavenumbers of ν (C=O), ν (C=N) and ν (O=H) bands with substituent constants was calculated with a Hewlett-Packard calculator. Ultraviolet spectra were recorded with a Specord UV VIS (Zeiss, Jena) apparatus in methanol at 3. 10⁻⁵ and 7. 10⁻⁵ we concentrations in a 1 cm-cell. The ¹H-NMR spectra were taken in deuteriated dimethyl sulfoxide and chloroform with a Tesla BS 487 C instrument operating at 80 MHz, hexamethyldisiloxane being the internal reference substance. Measured were chromatographically pure substances, the preparation of which was already published¹⁰.

REFERENCES

- 1. Konečný V.: Pestic. Sci. 4, 775 (1973).
- 2. Konečný V.: Pestic. Sci. 7, 97 (1976).
- 3. Konečný V., Varkonda Š., Vargová M.: Pestic Sci. 7, 107 (1976).
- 4. Konečný V., Varkonda Š., Golier S., Steskal R.: Agrochémia Bratislava 17, 207 (1972).
- 5. Konečný V., Kováč Š., Šustek J.: Pestic. Sci. 10, 227 (1979).
- 6. Eigen J.: Angew. Chem. 3, 1 (1964).
- 7. Kováč Š., Solčániová E., Baxa J.: Tetrahedron 27, 2823 (1971).
- 8. Kováč Š., Solčániová E.: Chem. Zvesti 23, 686 (1969).
- Purdela D., Vilčanu D.: Khimia Organicheskich Soedinenii Fosfora, p. 43. Izd. Khimiya, Moscow 1972.
- 10. Konečný V.: Chem. Zvesti 30, 663 (1976).

Translated by Z. Votický.